I’d like to present a detailed guest post which provides a well-argued perspective on the energy future of another developed nation — Great Britain. Barry Brook
"A huge advantage of the proposed solution is that it is the most affordable and sustainable one for addressing peak oil and energy security. The near elimination of fossil fuel emissions is a bonus. Therefore, it should appeal in equal measure to those who are convinced of anthropogenic global warming and those who remain skeptical."
Guest Post by Dr. Douglas Wise. Douglas is a retired Lecturer in Animal Husbandry at the Department of Clinical Veterinary Medicine at Cambridge University. He is a regular and valued commenter on BNC.
Political Considerations
1) Economic growth is dependent upon a readily available supply of affordable energy.
2) Thanks in large part to the actions of its present government, the UK is the most indebted of all developed nations. It is also amongst those with the greatest population density.
3) Repayment of debt is possible only with economic growth and/or a substantial drop in living standards.
4) For the past decade, the UK has failed to make necessary investments in energy infrastructure. Many of our power stations will shortly have to be retired and it may not be possible to replace them in time to prevent economic disruption due to power losses.
5) There is widespread acceptance that oil production has peaked or is about to peak. Simultaneously, its ERoEI (energy return on energy invested) is continually dropping while world demand, particularly from developing countries, is rising.
6) The UK is a net energy importer and its energy security under threat.
7) There is a large and growing consensus among those with expertise in the field that the planet is warming, that the warming is anthropogenic and largely caused by combustion of fossil fuels and that, without drastic reductions in CO2 emissions, a tipping point will be reached this century with an unstoppable and catastrophic acceleration of warming.
8) It follows that the UK must not only replace its retiring power stations, but substantially increase (probably quadruple) electrical power production in order to phase out use of fossil fuels and cope with its increasing population, even having allowed for increasing efficiency in energy use.
9) Britain only emits 2% of global CO2 emissions. In order for the extent and effects of global warming to be mitigated, there has to be a planet-wide approach to the problem.
10) Economic development and human population growth (inevitable till 2050 without accelerated death rates on an unprecedented scale) indicate that, without affordable alternatives, coal use will expand and, with it, increased CO2 emissions. High priced alternatives to fossil fuels will not provide a solution to global warming because they won’t be affordable by developing nations in a timely manner, if at all. One thus needs an emissions-free energy source that can compete with and replace coal as a source of baseload power.
11) The UK probably now has a developing nation status. It has a high population that cannot feed itself without importing food, it can no longer energise itself without importing energy, it has lost most of its manufacturing base and its much vaunted financial services sector is in a mess. High welfare provisions have led to a dependency culture, large-scale immigration and an ill-disciplined and poorly educated indigenous underclass.
12) The majority of the UK population remains largely unaware of the extent of the crisis that is confronting it and the extremity of the efforts that will be needed if a solution is to be found.
13) This lack of awareness has to be primarily the responsibility of political leaders from all parties. Whether they could reasonably have been expected to have done better in the type of democracy that exists is debatable, given that gaining power now seems to involve telling voters what they want to hear and attempting to provide for their immediate gratification.
14) Solution of the crisis requires that the nation puts itself on a war footing. This will only be possible with multi-party consensus. An apolitical Department of Climate/Energy Security has been proposed. A case could even be made for a National Government.
15) Although the problem is by no means that of the UK alone, the UK is in the worst position to deal with it. Now is probably not the time to damage our relations with the EU.
16) Human population continues to grow. This is true for the world and for the UK but not for Europe as a whole. The UK might become dependent upon the EU as a means of gaining enough to eat. Population growth is unsustainable. It should be a matter of policy for the UK government to aim for negative population growth, regardless of the short-term problems that this will create with the balance between workers and pensioners.
17) The private sector will not spontaneously come up with a solution without government direction. However, the example of wartime aircraft production gives a model for what could be achieved by private/public collaboration. Current UK and EU policies, though indicating desire to achieve a satisfactory energy policy, fail to provide the means to achieve it.
18) Emissions Trading has so far signally failed to achieve its objectives. The reasons are now reasonably understood. Permits to pollute have been issued in excess and at too low a price and offsets have been used fraudulently. The system has benefited some City traders and increased bureaucracy at the expense of the general taxpayer. Renewable obligations and subsidies (e.g. feed in tariffs) are distorting the proper working of the energy market. Governments may be picking the wrong winners by favouring renewables over other sources of clean energy. Different energy sources should be free to compete with each other but only after all of their costs have been internalised. If such internalisation is not to include a price on CO2 emissions, an additional carbon tax will also be needed. This should be fiscally neutral and thus be offset by a reduction in some other form of taxation. It might even be worth considering a total re-basing of the tax system around carbon.
19) Quangos set up to deliver worthy advice to the citizenry over energy efficiency and how to invest in green energy systems have become fruitful sources of employment for bureaucrats and sources of income for a myriad of small consultancies which peddle solutions of often dubious merit. Energy users will more economically and intelligently respond to price signals on their own if the yield from a carbon tax reverts to them in the form of tax reduction elsewhere, provided that this is achieved in a non regressive manner.
20) In the short term, resources should be diverted from health, welfare and education budgets and made available to address energy concerns. Private use of fuel for transport may, in future, have to be rationed. There should be the imposition of swingeing taxes on air transport.
21) Innovative sources of finance should be sought and citizens given opportunities to share the possible benefits of an energy-secure future. Short-term pain should be in the hope of long-term gain. Pension fund managers seek assured long-term investments and have a continuing input of funds, which they currently have to invest. They are currently finding it difficult to select suitable investment opportunities. Given appropriate government policy, investment in energy infrastructure could prove extremely attractive. Similarly, some sort of “energy bonds” could be issued which would be treated like ISAs but would allow for greater investments for the same tax advantages. It might even be worth considering making these compulsory for the very wealthy as an alternative to higher top rates of tax.
Britain’s Energy Future – Technical Considerations
1) The UK must not only replace its retiring electric generating capacity, using emissions-free energy sources, it must also greatly increase the current generating capacity to enable the replacement of fossil fuels. This will, of course, require as major upgrading of the National Grid. The cost of the upgrading will be substantial but its extent will depend upon the mix of energy sources chosen for electrical generation. Pursuit of a renewables solution, for example, would require vastly more grid expenditure than would other types of emissions-free solutions.
2) Concurrently, every effort must be made to use energy more efficiently (eg by use of insulation, draft-proofing, co-generation, heat pumps and more energy-efficient transportation etc).
3) At present, 80% plus of electricity is generated by combusting coal or gas. Even disregarding the CO2 emissions resulting from burning coal, it is an extremely polluting source of energy in terms of particulate, SO2 , NOx and heavy metal emissions. If the costs of this pollution were internalised, the price of electricity from coal would increase by 1.5-2.5p/kWh. However, this does not factor in CO2 emissions, the principal cause of global warming. The continued use of coal can only be justified if its CO2 emissions are captured and sequestered (see below). Although electrical generation from gas, in theory, is less harmful than from coal, the advantage disappears if the gas has to be imported from long distance (eg Russia) and when leaks are considered. By the time Russian gas reaches the UK, only about 55% of the original product will arrive, the remainder having been combusted to generate the energy needed to push the surviving gas along the pipeline. Methane leaks, though minor, can also be very damaging because methane, though shorter lived in the atmosphere than CO2, is much more potent as a greenhouse gas. It is therefore illusory to think that the use of gas (without CO2 capture and sequestration) is much less harmful than the use of coal.
4) Oil is used for almost all transport. Its availability is declining and its price likely to increase. To the extent that it is possible, oil should be replaced by electrical power. The electrical power might be used directly (as in electric cars) or for synthesis of alternative vehicle fuels (e.g. methanol or ammonia). Biofuels may also be required but, if so, they will have to be imported because the UK is not in a position to produce more than a dribble. It should be appreciated that electrically-powered vehicles are only “green” if the said power is produced from non CO2 emitting sources.
5) The CO2 emission-free sources of power that are available for consideration are discussed below:
a) Fossil fuels with carbon dioxide captured and sequestered (CCS). Fossil fuel reserves are finite (not sustainable) but could be used to buy time if their global warming effects were prevented. CCS has not yet proved to be feasible on a large scale. However, should commercial deployment prove technically viable in the future, coal’s ERoEI would almost certainly be halved because a lot of its energy would be used for the capture, transport and sequestration of the CO2. Similarly, its sustainability would be halved. The price of coal makes up approximately 70% of the cost of the electricity generated from it. Electricity from CCS coal would thus be very significantly more expensive than that produced from conventional coal. A developed nation with a reasonable population density and without huge indebtedness might be able to cope with this increase. The UK and developing nations may not.
b) Wind energy. Wind is not a concentrated source of energy. Furthermore, it is intermittent and its intermittency is unpredictable. Although the UK has good wind resources relative to most of Europe, the capacity factor (CF) is no better than 25%. In other words, on average, it only produces energy at a quarter of its rated capacity so that 4GW-worth of wind turbines have to be built to replace 1GW of coal- fired power station. To improve the predictability of wind power, it would, in theory, be possible to connect up the wind resources from widely dispersed parts of the country so that there is some chance that, if wind isn’t blowing in one area, it might elsewhere. However, in order to make these connections, huge extra investment in the National Grid will be required which will cost as much or more than the investments needed to build the wind farms themselves. The latter investments are not traditionally attributed to wind energy producers and their costs are thus externalised. Furthermore, despite the extra connectivity, there will still be occasions when major geographic areas are wind free. Wind, therefore, must always rely on a source of backup power, normally provided by gas, unless or until very much cheaper methods of storing electricity become available. A modern industrial society cannot function without a source of reliable and predictable power. However, when gas is used for backup power, it is used less efficiently (open cycle versus closed cycle turbines). Thus, although, in theory, wind can reduce CO2 emissions when it’s blowing, overall it doesn’t achieve much in the way of reductions because of the extra CO2 emissions associated with the reduced efficiency of gas when used for backup compared to baseload.
As wind energy increases as a proportion of total energy in the national mix, the less easily it can be managed and the less CO2 emission savings will accrue. Approximately 1600, 2.5MW turbines are required to replace a single 1GW conventional coal power station. Because of the low power of wind per unit area, these will have to be spaced over a large land or sea area although the footprints of the turbines themselves will be smaller. Land based turbines are about two thirds the cost of those offshore and have lower grid connection costs. Nevertheless, they cannot compete with conventional coal without large subsidies from the taxpayer and despite the fact that the costs of their extra burden on the grid are externalised. In summary, wind cannot provide more than a smallish percentage of UK power requirements. It is a possible, partial rich nation solution but Britain has ceased to be a rich nation. The subsidies given to wind are a probably a luxury too far for the UK.
c) Solar thermal and solar PV. Even in sunbelt nations, the cost of electricity produced from solar power stations is nearly an order of magnitude greater than that from conventional coal. In the UK, the cost would be doubled again. Some have suggested importing solar electricity from sunbelt states but this would involve extra transmission costs and loss of energy security. It would also divert scarce capital out of the country and minimise potential employment benefits. However, even in the UK, solar thermal panels can be used to produce low-grade heat which might be suitable for domestic hot water. Application of this technology may provide a very small percentage of the UK’s energy requirements at a possibly economic cost despite the fact that the sun provides most of its energy in the summer when least hot water is needed.
d) Hydro power. The UK has little hydro capacity and not a lot of further potential for hydro. What we do have is very useful and valuable to the extent that it can be deployed when most needed and is instantly dispatchable.
e) Wave power. At best, it can never provide more than a very small proportion of our energy needs. Currently, the technology is expensive and immature.
f) Tidal power. The UK has good tidal ranges and a suitable coastline for producing tidal power. The power produced is dependable and predictable. However, tidal power will probably never meet much more than 5% of the UK’s total energy needs and the technology will never be the cheapest way to produce baseload electricity. However, by using tidal lagoons, high value peaking power can be produced and some pumped storage can be accommodated to convert low to high value electricity.
g) Biomass power. Producing useful energy from waste biomass (e.g. by combustion or biodigestion) may have some merit. However, defining waste in this context is problematic. Straws and animal manure, for example, are usually either retained or spread on agricultural land. The more off-take there is from the soil, the faster it will degrade without fossil-fuel derived fertiliser inputs and, even these, will not replace loss of organic carbon. Growing special biomass crops (e.g. miscanthus or willow coppice) for energy is considered to be carbon neutral and is currently encouraged and subsidised by the government as way of substituting for fossil fuels. Its claimed carbon neutrality is coming under increasing challenge. In any event, given the UK’s small land area and large population, it can be dismissed as trivial in its potential contribution either as an energy security or global warming solution.
h) Nuclear power. The French produce the cheapest electricity in Europe with a mix of 80% nuclear and 20% hydro. The UK, a pioneer of civil nuclear power, sold off its nuclear industry and allowed its expertise in this field to lapse. This was most unfortunate, given that both main political parties are now anxious to roll out nuclear power as soon as possible. Our current fission reactors are Generation II and many are approaching obsolescence. They currently generate about 16% of the UK’s electricity. The new ones ordered will be superior Generation III designs – safer and more efficient. Typically, nuclear electricity is produced continuously to provide baseload power (as in the case of coal). However, one of the newer designs (French) has load following capability. In future, load following will be less important because previously surplus night-time power can be used for electric vehicle re-charging or for ammonia fuel synthesis. Both Generation II and III reactors extract less than 1% of the energy from the uranium fuel they use. Long term, therefore, although they produce clean energy, most consider that they are not sustainable due to limitations in readily extractable known fuel supplies.
Fortunately, Generation IV reactors will be almost certainly be available from 2020-2035, depending upon type. Some of these will be able to extract up to 160 times more energy than present generation reactors from the same amount of fuel and thus greatly reduce the so-called nuclear waste problem. In fact, they will also be able to consume existing “waste” as a useful energy source. Some of the fourth generation designs will also extract energy by using thorium, which is four times more abundant than uranium. Thus, fission power has the capability of becoming a complete, clean and truly sustainable energy solution for thousands of years. The scientific and technological know-how needed for the production of commercial demonstration Generation IV plants are extant or imminent although it is probable that not all of the competing options will be deployed. Until such time as one or more of the designs is commercially available, the “waste” produced by the current and about-to-be-deployed Generation II and Generation III reactors will produce “start charges” for them and so allow their more expeditious roll out. The ERoEI of 4th Generation nuclear-produced electricity will be immense – about five times greater that that of oil at the time of its original discovery when extraction was simple and several hundred times greater than electricity from renewables. Nuclear fission is the only technology that has the potential capability of providing all of the UK’s energy needs in a sustainable manner.
CCS coal is not sustainable, not technologically ready and probably not affordable. Renewables are incapable of meeting more than a fraction of UK total demand and are likely to prove extremely expensive to deploy. Despite the seemingly huge advantages of nuclear fission power, it has many detractors. Its safety record is substantially better than that of all other energy generating technologies but is, nevertheless, criticised. People worry about the long-lived radioactive “waste” although it presently constitutes far less of a health hazard than coal waste. Furthermore, when Generation IV designs are deployed, the so-called “waste” problem will, to all intents and purposes, vanish. Some worry about the effects of terrorist attacks or earthquakes on nuclear reactors but these are already very expensively addressed in the reactor designs. This is not the case for oil refineries or chemical plants. Attacks on these could have much more adverse effects on the local population than would an attack on a nuclear plant.
There are also those who claim that nuclear energy is too expensive and too slow to deploy. To some extent, these criticisms are linked. In the past, each reactor tended to have a one off design (which is always likely to lead to building delays and cost overruns). In the future, “off the peg” designs will be used. Private investors consider investment in nuclear to be risky because of the lag time between taking a decision to invest and starting to obtain an income stream. The effects of legal challenges by NIMBYs and gold plating by bureaucrats can result in huge and unforeseen increases in project costs. Servicing the interest charges on the required capital constitutes a major cost for nuclear power whereas building material and fuel costs are relatively minor. The time to build a nuclear power plant (and its consequent cost) is thus as “long as a piece of string” in liberal democracies such as the USA and UK. A four to five year period from start of build to commissioning would appear to be the norm for standard Generation III designs recently built in Japan, South Korea and China. These can be expected to produce electricity at a price that can compete with that from a new coal plant with controlled NOx, SO2 and aerosol emissions and cheaper than that from a new CCS coal plant should one ever get built.
There are sound technical reasons to suppose that 4th Generation reactors will eventually produce power significantly more cheaply than can be produced from any other currently available energy source. It is also pertinent to point out that far more steel and concrete are needed to build renewable energy systems than nuclear ones when expressed per unit of energy produced. Concrete and steel manufacture cause high CO2 emissions. It would thus almost certainly take longer to reduce CO2 emissions if one were to pursue a renewable rather than nuclear strategy. Finally, many nuclear critics are worried over the possible proliferation risks associated with an expansion of civil nuclear power. It could be argued that they might as well continue to worry because the “horse has bolted”. So many nations are now expanding their civil nuclear capabilities that little can be achieved by abstinence on the part of the UK. The best approach is to expedite roll out of Generation IV since reactors of this type have been designed to be more proliferation proof than their predecessors.
Conclusions
The UK does not have the luxury of having a suite of potential energy solutions to choose from – it is highly overstocked with people, has a collapsing energy infrastructure and very high levels of debt. The choice for baseload power must be nuclear. In the short-term, it might be necessary to continue to rely on gas for peaking power. Using gas, a finite commodity, for domestic heating and baseload is not sensible. Research on CCS must accelerate and, if practical, the technology should be used to eliminate the CO2 emissions from gas. This makes sense because peaking electricity is more valuable than baseload. It seems inconceivable that electricity from CCS coal could ever compete with nuclear electricity to provide baseload power, given their widely different ERoEIs. Furthermore CCS coal is a less sustainable solution than nuclear even if unexpected glitches were to occur in the deployment of Generation IV technology.
It is fortunate that the government has belatedly indicated its support for nuclear power and that the main opposition party agrees. The government is also to be congratulated for attempting to streamline the planning process which, at present, greatly adds to the expense and time to deployment of new energy infrastructure.
The EU’s, and hence UK’s, commitment to renewables as a main plank in a CO2 emissions reduction programme is extremely unfortunate. It has caused distortions in the energy market by subsiding renewables while ignoring other clean solutions. Nuclear power is already discriminated against in being the only energy generating industry whose costs are internalised. Given a level playing field for investment in clean energy, most private investors would probably act in a rational manner and prefer nuclear to wind. It may, therefore, not be necessary for the government to do other than levelling the playing field by treating nuclear and, for that matter, CCS coal as “honorary” renewables and placing a tax on carbon. It is tempting to suggest that current obsessions over renewables are so economically damaging and irrelevant to a secure and sustainable energy future that the government should take matters into its own hands and produce fully nationalised nuclear power and not waste its limited funds by subsidising alternative technologies. However, this could be construed as anti-democratic and it is probably sensible not to close the door completely to alternatives. Wind, for example, can certainly provide electricity economically if one could find a use for an unpredictable and intermittent source of power. It is only when producers demand to supply the grid whenever it suits them and without financing the necessary backup that common sense flies out of the window.
Having accepted the idea of going back into nuclear power, the government should ensure that an adequate workforce to deal with it is produced as soon as possible. It should do all it can, directly or with inducements to the private investors, to ensure that imported reactors of the current technology are very rapidly deployed, given that there are limited supplies and great global competition in this area. It should invest heavily in Generation IV research and development, including the new and more proliferation resistant re-processing methods, and form strategic alliances with one or more other nations that are already further advanced in this area (e.g. Russia, India, France, Japan, USA). The US-designed Integral Fast Reactor (IFR) – a sodium cooled reactor design with on-site pyroprocessing –is the nearest Generation IV Western design predicted to reach the stage of commercial demonstration (2015). If the UK wishes to re-establish itself as a civil nuclear power with the potential to benefit from future expansion in this area, then the earliest entry possible into the 4th Generation future would be necessary.
There is a great danger that the government will sit back on its laurels having announced plans for 10 new nuclear power plants, all to be constructed on existing nuclear sites. If each plant were to produce 2GW of power, this would hardly represent a great boost for nuclear energy, given that several existing plants are due for decommissioning. If the nation is serious about becoming self-sufficient in clean, sustainable power by 2050, it will need in the order of 150-200GW of nuclear power. This represents a thirteen to eighteen-fold increase over current nuclear electricity generation and the construction of 5-6 new reactors/annum for 30 years. While this will be extremely costly, it remains the most economic solution and there will be balancing savings in having no expenditure on imported energy, itself almost certain to become increasingly expensive. By the same token, most government tax revenues on fossil fuels will disappear and alternatives will have to be found.
A huge advantage of the proposed solution is that it is the most affordable and sustainable one for addressing peak oil and energy security. The near elimination of fossil fuel emissions is a bonus. Therefore, it should appeal in equal measure to those who are convinced of anthropogenic global warming and those who remain sceptical.